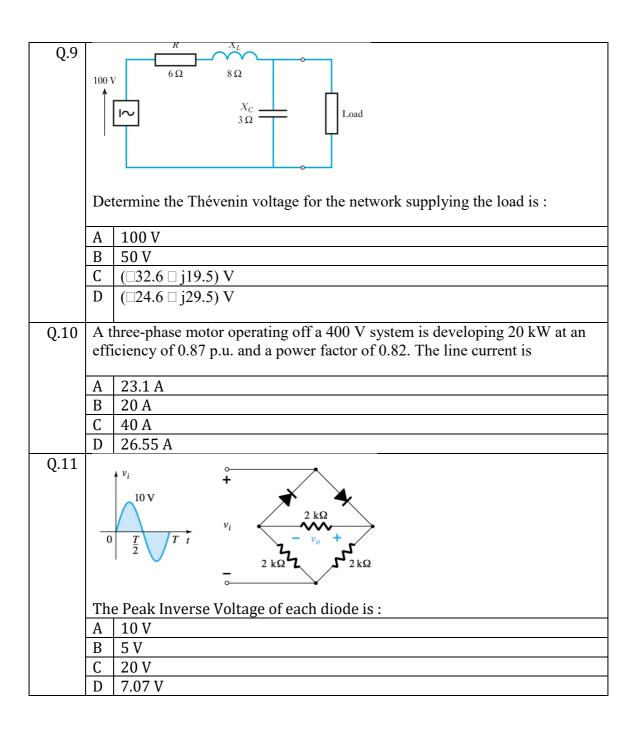
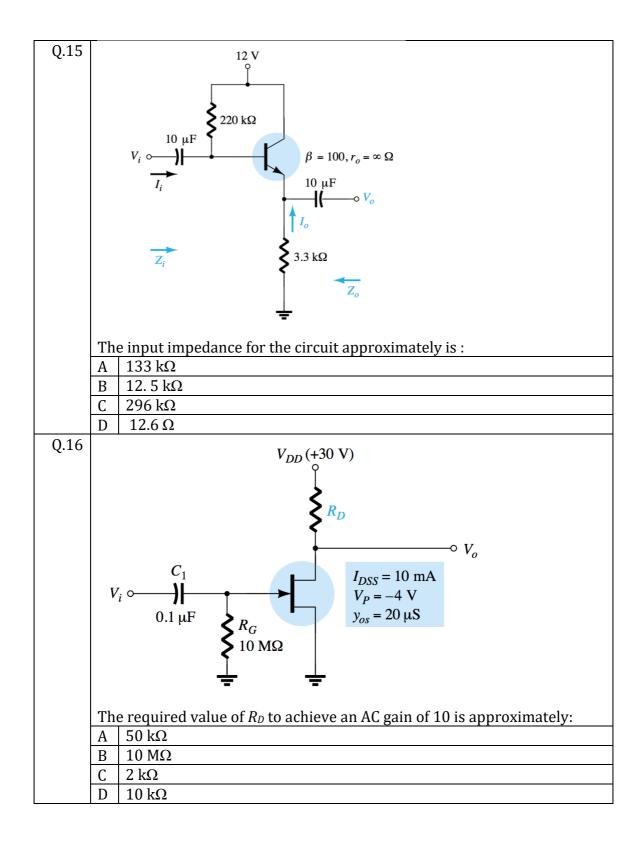

$10~{\rm QUESTIONS}$ LOG ANA- REASONING AND $20~{\rm Q}$ ON ENGG MATH. PRINTED

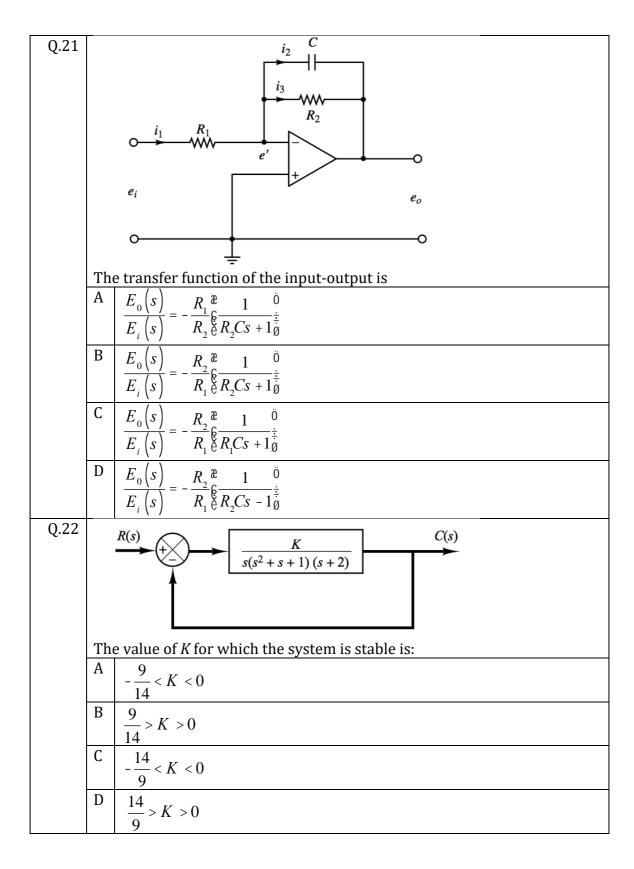

1-30.

THEN SERIAL 31-90 THESE BRANCH QUESTIONS.

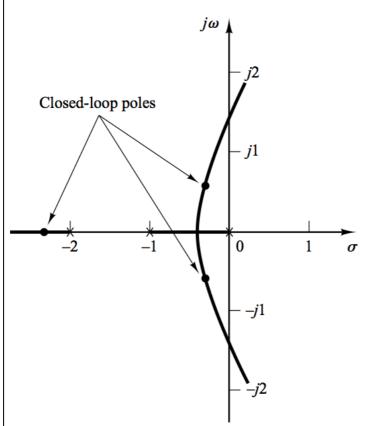

60 Q OF EE FOR MTECH ENTRANCE

Q.1	connected in series across a 200 V supply, the voltage across the smaller			
	capacitor is:			
	A 75 V			
	В	0		
	C	200 V		
	D	125 V		
Q.2	circ	coil of 200 turns is wound uniformly over a wooden ring having a mean cumference of 600 mm and a uniform cross-sectional area of 500 mm2. If current through the coil is 4.0 A, the flux density is:		
	A	1680 μΤ		
	В	0.838 μΤ		
	С	1330 μΤ		
	D	1680 T		
Q.3		coil of 300 turns, wound on a core of non-magnetic material, has an		
		uctance of 10 mH. The average value of the e.m.f. induced when a current		
	OI :	of 5 A is reversed in 8 ms (milliseconds) is:		
	Α	1250 V		
	В	167 V		
	С	12.5 V		
	D	41.7 mV		
Q.4		A B		
	$igg _{I_{\Lambda}}$ $igg _{I_{ m R}}$			
	The total energy stored in the magnetic field can be given by the			
	expression			
	. 1			
		$\frac{1}{2}L_{A}I_{A}^{2} + \frac{1}{2}L_{B}I_{B}^{2} - \frac{1}{2}M_{AB}I_{A}I_{B}$		
	В	$\frac{1}{2}L_{A}I_{A}^{2} + \frac{1}{2}L_{B}I_{B}^{2} + M_{AB}I_{A}I_{B}$		
	С	$\frac{1}{2}L_{A}I_{A}^{2} + \frac{1}{2}L_{B}I_{B}^{2} - M_{AB}I_{A}I_{B}$		
	D	$\frac{1}{2}L_{A}I_{A}^{2} + \frac{1}{2}L_{B}I_{B}^{2} + \frac{1}{2}M_{AB}I_{A}I_{B}$		

Q.17	Determine the output voltage of an op-amp for input voltages of V_{i1} =150 V,		
	$V_{i2} = 140 \text{ V}$. The amplifier has a differential gain of $A_d = 4000$ and the value		
	of CMRR is 100. The output voltage approximately is:		
	of Children 190. The output voltage approximatory is.		
	Α	40 mV	
	В	30 mV	
	C	20 mV	
0.40	D	46 mV	
Q.18		The gain of an amplifier changes from a value of 1000 by 10%. The over all percentage gain change in the amplifier is used in a feedback circuit	
		naving a feedback gain of 1/20 is	
	1	at the doublek guill of 1/20 is	
	Α	0.19	
	В	0.29	
	С	0.39	
	D	0.49	
Q.19	$\frac{H_2}{G_1}$		
	$ \begin{array}{c c} R \\ \hline & \\ & \\$		
	The gain of the system is		
	Α		
		$\frac{G_{1}G_{2}G_{3}}{1+G_{1}G_{2}H_{1}-G_{2}G_{3}H_{2}+G_{1}G_{2}G_{3}}$	
	В	$G_1G_2G_3$	
		$\frac{1 + G_1 G_2 H_1 + G_2 G_3 H_2 + G_1 G_2 G_3}{1 + G_1 G_2 H_1 + G_2 G_3 H_2 + G_1 G_2 G_3}$	
	С	$G_1G_2G_3$	
		$\frac{G_{1}G_{2}G_{3}}{1 - G_{1}G_{2}H_{1} + G_{2}G_{3}H_{2} + G_{1}G_{2}G_{3}}$ $\frac{G_{1}G_{2}G_{3}}{1 - G_{1}G_{2}H_{1} - G_{2}G_{3}H_{2} + G_{1}G_{2}G_{3}}$	
	D	$G_1G_2G_3$	
		$1 - G_1 G_2 H_1 - G_2 G_3 H_2 + G_1 G_2 G_3$	


The state space representation of the system is given by

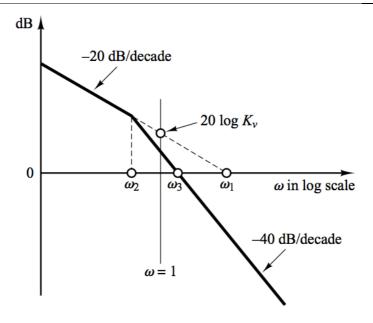
$$\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
\frac{k}{m} & \frac{b}{m}
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + \begin{bmatrix}
0 \\
\frac{1}{m}
\end{bmatrix} u$$


$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & \frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u$$

$$\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-\frac{k}{m} & -\frac{b}{m}
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + \begin{bmatrix}
0 \\
\frac{1}{m}
\end{bmatrix} u$$

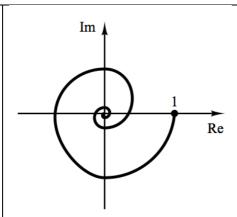
The root locus shown in the figure belongs to a forward transfer function of the form :


A	K
	$\overline{s(s+1)(s+2)}$

B
$$\frac{K}{s(s-1)(s+2)}$$

C
$$\frac{K}{(s+1)(s+2)}$$

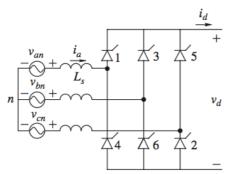
$$\begin{array}{c|c} D & K \\ \hline s(s+1)(s-2) \end{array}$$


This Log-magnitude curve represents a transfer function of the form:

$$\begin{array}{c|c} A & K_1 \\ \hline s \left(K_2 s + K_3 \right) \end{array}$$

$$C = \frac{K_1}{\left(K_2 s + K_3\right)}$$

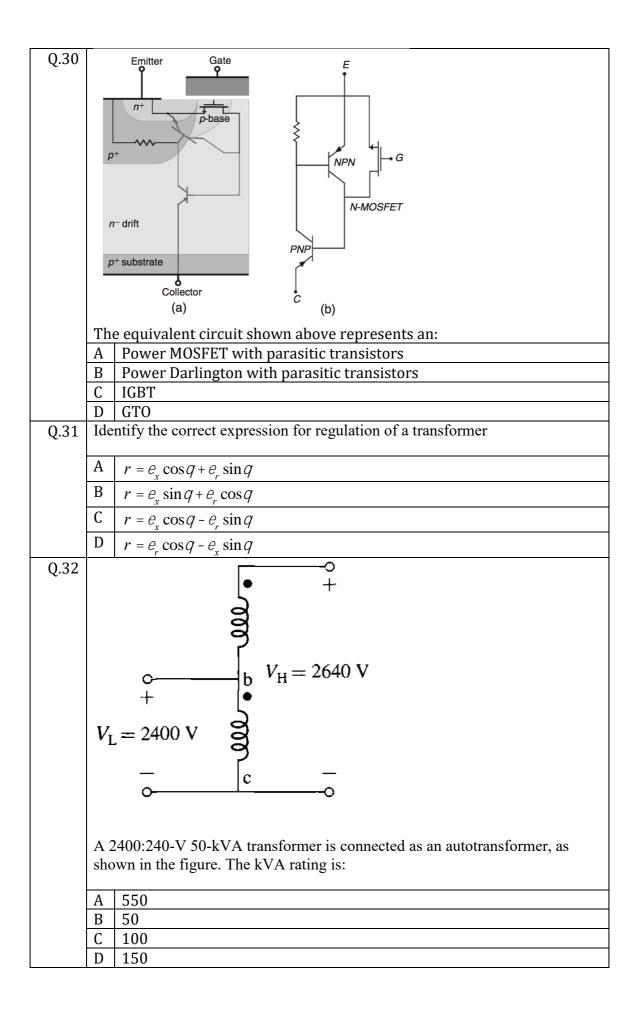
D
$$\frac{K_1}{s(s+1)}$$


Q.25

The polar plot shown in the figure is of a transfer function of the form:

- A $\frac{1}{(ts+1)}$
- B e^{-jas}
- C e^{-jas} ts+1
- $\begin{array}{c|c}
 D & e^{-jas} \\
 \hline
 (ts^{20} + 1)
 \end{array}$

Q.26

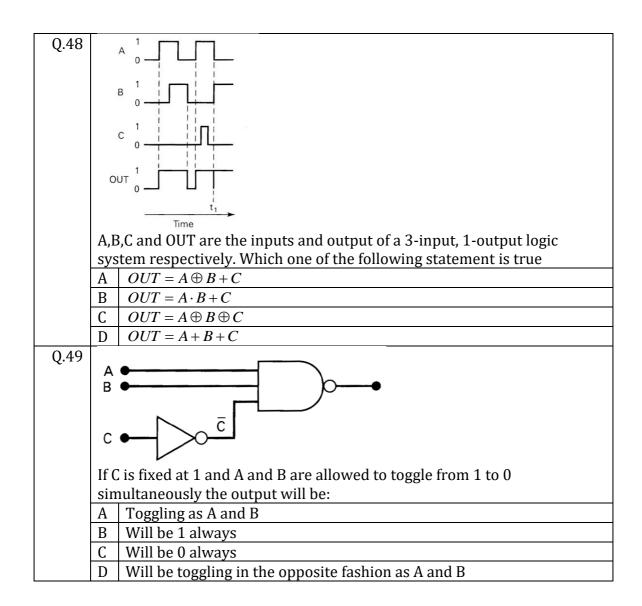


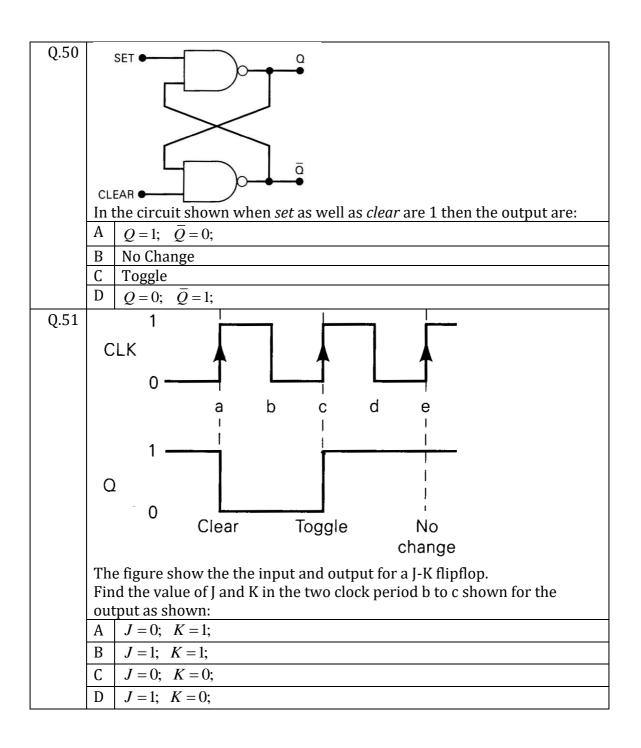
The peak value of the output voltage with negligible source inductance L_s is given by the expression:

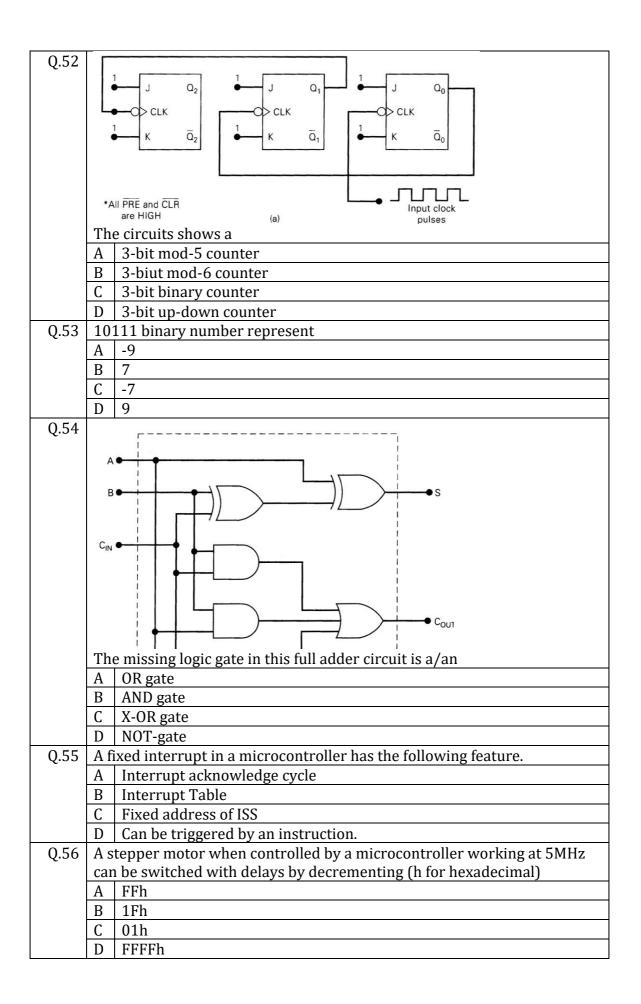
- $\begin{array}{c|c} A & \frac{1}{\rho} (V_{LL})_{\text{max}} \end{array}$
- $\frac{1}{2} \left(V_{LL} \right)_{\text{max}}$
- $C = \frac{2}{C} (V_{LL})_{max}$
- $D \left(\frac{3}{\rho} \left(V_{LL} \right)_{\text{max}} \right)$

Q.27 The effect of source inductance is: Increase of the DC output voltage in the output Increase in the harmonics at the input C Reduction in the current harmonics at the input D | Reduction in the voltage harmonics at the input In a single-phase thyristor converter, $V_S = 120 \text{ V}$ (rms) at 50 Hz, and the firing Q.28 angle α =45°. This converter is supplying 1kW of power. The dc-side current id can be assumed purely dc. The average DC output voltage is: 76.4 Α В 54 C 64 D 84 Q.29 The load current waveform shown in the figure is of a single phase fully controlled converter. It has a:

Purely Resistive load.
Purely Inductive Load.
Load with small R/L ratio.
Load with large R/L ratio.




Q.33	By introducing a very small air gap in the magnetic circuit of a		
	transformer the primary side power factor will		
	Α	Increase	
	В	Remain same	
	С	Become negative	
	D	Decrease	
Q.34		X >	
		Massless magnetic armature Massless coil Magnetic core	
		e expression for the input inductance for the above circuit can be given $(g \text{ air gap}; x \text{ is the displacement}; d \text{ is the magnetic iron path length})$	
	A A		
	A	$L = \frac{m_0 N^2 ld \left(1 - \frac{x}{d}\right)}{2g}$	
	В	$-mN^2ld$	
		$L = \frac{0}{2\sigma}$	
	С	2g	
		$L = \frac{m_0 N^2 ld}{2g}$ $L = \frac{m_0 N^2 2g}{ld \left(1 - \frac{x}{d}\right)}$	
	D	$L = \frac{m_0 N^2 2g}{ld}$	
Q.35	A 500-V shunt motor takes 4 A on no-load. The armature resistance		
	inc	luding the brushes is 0.2 ohms and the field current is 1 A. The output	
	wh	en it takes 100 Amp is :	
	Α	56 kW	
	В	46 kW	
	С	36 kW	
	D	50 kW	
Q.36			
	It supplies an induction motor which has a full load speed of 1440 rpm.		
	The %slip is:		
	A	1	
	В	2	
	C	3	
	D	4	


Q.37		induction motor has efficiency of 0.9 when the load is 50hp. At this	
	load the stator copper loss and rotor copper loss each equals the iron loss. The mechanical loss is one third of no-load loss. The slip is:		
	A	0.312	
	В	0.0312	
	C	0.00312	
	D	3.12	
Q.38		e power input to a 3-phase induction motor is 60kW. The stator losses	
Q.50		al 1kW. The total mechanical power developed at a slip of 3%.	
	Α	58.1	
	В	59.02	
	С	57.23	
	D	56.2	
Q.39		$2r_1$ $-2r_2$	
		<u> </u>	
		D	
	The	e figure shows the transmission line with two conductors. The	
		pacitance between the lines is given by:	
	Α	σ π	
		$C_{AB} = \frac{\pi}{\ln\left(\frac{D}{\sqrt{r_1 r_2}}\right)}$	
	В	$C = \frac{\pi \varepsilon_0}{2\pi}$	
		$C_{AB} = \frac{1000}{\ln\left(\frac{D}{\sqrt{r_1 r_2}}\right)}$	
	С	$C_{AB} = \frac{\pi \varepsilon_0}{\ln\left(Dr_1 r_2\right)}$	
	D	$C_{AB} = \frac{\ln\left(\frac{D}{\sqrt{r_1 r_2}}\right)}{\pi \varepsilon_0}$	
0.40	Λ	U	
Q.40	_	natching circuit in analog signal processing is used to match	
	A B	voltage power	
	С	impedance	
	D	current	
Q.41	_	e zero sequence components of a 3-phase system indicate	
۷.11	A	DC quantities with unequal magnitudes	
	В	AC quantities with phase difference of 120 degrees	
	C	AC quantities with no phase difference between them	
	D	DC quantities with equal magnitude	
Q.42		-phase transmission line has a resistance of 0.22 ohms and an	
₹. 1-		uctive reactance of 0.36 ohms. The voltage at the sending end to give	
		OkVA with unity power factor and at 2000 volts is:	
		v 1	

A	2106 V
В	2206 V
С	2086 V
D	2056 V

Q.43 The fault current is largely: A Inductive B Resistive C Capacitive D Has angle almost 0 to the applied voltage The correct expression of the divergence theorem is: A $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} (\mathbf{D}) dv$ B $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} (\mathbf{D}) dv$ C $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} (\mathbf{\nabla} \cdot \mathbf{D}) dv$ D $\iiint_{V} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} (\mathbf{\nabla} \cdot \mathbf{D}) dv$ Q.45 The correct expression for incremental length in spherical coordinate system is A $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\partial\hat{\mathbf{a}}_{0} + r\sin\partial d\phi\hat{\mathbf{a}}_{\phi}$ B $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\partial\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi}$ C $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rin\theta\partial\hat{\mathbf{a}}_{0} + rin\phi\partial\hat{\mathbf{a}}_{\phi}$ D $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + r\sin\theta d\partial\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ B $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$ D $\nabla \cdot \mathbf{H} = \mathbf{J}$					
B Resistive C Capacitive D Has angle almost 0 to the applied voltage Q.44 The correct expression of the divergence theorem is: A $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} (\nabla \cdot \mathbf{D}) dv$ B $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} (\nabla \cdot \mathbf{D}) dv$ C $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} (\nabla \cdot \mathbf{D}) dv$ D $\iiint_{V} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} (\nabla \cdot \mathbf{D}) dv$ Q.45 The correct expression for incremental length in spherical coordinate system is A $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\theta d\theta\hat{\mathbf{a}}_{\phi}$ B $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + rd\theta\hat{\mathbf{a}}_{\phi}$ C $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + rd\theta\hat{\mathbf{a}}_{\phi}$ D $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + r\sin\theta d\theta\hat{\mathbf{a}}_{0} + rd\theta\hat{\mathbf{a}}_{\phi}$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ D $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$	Q.43	Th	e fault current is largely :		
C Capacitive D Has angle almost 0 to the applied voltage The correct expression of the divergence theorem is: A $\iint_{s} \mathbf{D} \cdot d\mathbf{S} = \iiint_{r} (\mathbf{D}) dv$ B $\iint_{s} \mathbf{D} \cdot d\mathbf{S} = \iiint_{r} (\mathbf{D}) dv$ C $\iint_{s} \mathbf{D} \cdot d\mathbf{S} = \iiint_{r} (\nabla \cdot \mathbf{D}) dv$ D $\iiint_{r} \mathbf{D} \cdot d\mathbf{S} = \iiint_{r} (\nabla \cdot \mathbf{D}) dv$ Q.45 The correct expression for incremental length in spherical coordinate system is A $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$ B $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$ C $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ D $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + r\sin\theta d\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ B $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$		Α	Inductive		
Q.44 D Has angle almost 0 to the applied voltage		В	Resistive		
Q.44 The correct expression of the divergence theorem is: A $\iint_{S} \mathbf{D} \cdot \mathbf{dS} = \iiint_{V} (\nabla \cdot \mathbf{D}) dv$ B $\iint_{S} \mathbf{D} \cdot \mathbf{dS} = \iiint_{V} (\nabla \cdot \mathbf{D}) dv$ C $\iint_{S} \mathbf{D} \cdot \mathbf{dS} = \iiint_{V} (\nabla \cdot \mathbf{D}) dv$ D $\iiint_{V} \mathbf{D} \cdot \mathbf{dS} = \iiint_{V} (\nabla \cdot \mathbf{D}) dv$ Q.45 The correct expression for incremental length in spherical coordinate system is A $\mathbf{dL} = dr\hat{\mathbf{a}}_r + rd\theta\hat{\mathbf{a}}_0 + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$ B $\mathbf{dL} = dr\hat{\mathbf{a}}_r + rd\theta\hat{\mathbf{a}}_0 + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$ C $\mathbf{dL} = dr\hat{\mathbf{a}}_r + r\sin\theta d\theta\hat{\mathbf{a}}_0 + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$ D $\mathbf{dL} = dr\hat{\mathbf{a}}_r + r\sin\theta d\theta\hat{\mathbf{a}}_0 + rd\theta\hat{\mathbf{a}}_{\phi}$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_v}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_v}{\partial t}$ D $\nabla \cdot \mathbf{J} = \frac{\partial \rho_v}{\partial t}$ The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$		С	Capacitive		
A $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{r} (\nabla \cdot \mathbf{D}) dv$ B $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{r} (\nabla \cdot \mathbf{D}) dv$ C $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{r} (\nabla \cdot \mathbf{D}) dv$ D $\iint_{r} \mathbf{D} \cdot d\mathbf{S} = \iiint_{r} (\nabla \cdot \mathbf{D}) dv$ Q.45 The correct expression for incremental length in spherical coordinate system is A $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$ B $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ C $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rsin\theta d\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ D $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rsin\theta d\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ B $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$		D	Has angle almost 0 to the applied voltage		
B $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iint_{V} (\mathbf{D}) dv$ C $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iint_{V} (\nabla \cdot \mathbf{D}) dv$ D $\iint_{V} \mathbf{D} \cdot d\mathbf{S} = \iint_{V} (\nabla \cdot \mathbf{D}) dv$ Q.45 The correct expression for incremental length in spherical coordinate system is A $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$ B $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ C $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi}$ D $d\mathbf{L} = dr\hat{\mathbf{a}}_{r} + r\sin\theta d\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ B $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ Q.47 The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$	Q.44	Th			
$\begin{array}{c c} C & \displaystyle \iint_{\mathcal{S}} \mathbf{D} \cdot \mathbf{dS} = \displaystyle \iint_{\mathcal{V}} (\nabla \cdot \mathbf{D}) d\nu \\ D & \displaystyle \iiint_{\mathcal{V}} \mathbf{D} \cdot \mathbf{dS} = \displaystyle \iint_{\mathcal{V}} (\nabla \cdot \mathbf{D}) d\nu \\ \end{array}$ $\begin{array}{c c} \mathbf{Q.45} & \text{The correct expression for incremental length in spherical coordinate system is} \\ A & \mathbf{dL} = dr \hat{\mathbf{a}}_r + r d \partial \hat{\mathbf{a}}_0 + r \sin \theta d \phi \hat{\mathbf{a}}_\phi \\ B & \mathbf{dL} = dr \hat{\mathbf{a}}_r + r d \partial \hat{\mathbf{a}}_0 + r \sin \phi d \phi \hat{\mathbf{a}}_\phi \\ \hline C & \mathbf{dL} = dr \hat{\mathbf{a}}_r + r d \partial \hat{\mathbf{a}}_0 + r \sin \phi d \phi \hat{\mathbf{a}}_\phi \\ \hline D & \mathbf{dL} = dr \hat{\mathbf{a}}_r + r \sin \theta d \partial \hat{\mathbf{a}}_0 + r d \phi \hat{\mathbf{a}}_\phi \\ \hline D & \mathbf{dL} = dr \hat{\mathbf{a}}_r + r \sin \theta d \partial \hat{\mathbf{a}}_0 + r d \phi \hat{\mathbf{a}}_\phi \\ \hline D & \mathbf{dL} = dr \hat{\mathbf{a}}_r + r \sin \theta d \partial \hat{\mathbf{a}}_0 + r d \phi \hat{\mathbf{a}}_\phi \\ \hline D & \mathbf{dL} = dr \hat{\mathbf{a}}_r + r \sin \theta d \partial \hat{\mathbf{a}}_0 + r d \phi \hat{\mathbf{a}}_\phi \\ \hline D & \mathbf{dL} = dr \hat{\mathbf{a}}_r + r \sin \theta d \partial \hat{\mathbf{a}}_0 + r d \phi \hat{\mathbf{a}}_\phi \\ \hline D & \nabla \times \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline C & \nabla \times \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \\ \hline D & \nabla \cdot \mathbf$		A	S		
D $\iint_{\mathcal{F}} \mathbf{D} \cdot d\mathbf{S} = \iint_{\mathcal{F}} (\nabla \cdot \mathbf{D}) d\nu$ Q.45 The correct expression for incremental length in spherical coordinate system is A $d\mathbf{L} = dr\hat{\mathbf{a}}_r + rd\theta\hat{\mathbf{a}}_\theta + r\sin\theta d\phi\hat{\mathbf{a}}_\phi$ B $d\mathbf{L} = dr\hat{\mathbf{a}}_r + rd\theta\hat{\mathbf{a}}_\theta + rd\phi\hat{\mathbf{a}}_\phi$ C $d\mathbf{L} = dr\hat{\mathbf{a}}_r + rd\theta\hat{\mathbf{a}}_\theta + rd\phi\hat{\mathbf{a}}_\phi$ D $d\mathbf{L} = dr\hat{\mathbf{a}}_r + r\sin\theta d\theta\hat{\mathbf{a}}_\theta + rd\phi\hat{\mathbf{a}}_\phi$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ B $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$					
Q.45 The correct expression for incremental length in spherical coordinate system is A $d\mathbf{L} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$ B $d\mathbf{L} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi}$ C $d\mathbf{L} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi}$ D $d\mathbf{L} = dr\hat{\mathbf{a}}_{\mathbf{r}} + r\sin\theta d\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ Q.47 The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$					
system is $ \begin{array}{c c} A & \mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi} \\ B & \mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi} \\ \hline C & \mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi} \\ D & \mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + r\sin\theta d\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi} \\ \hline Q.46 & Identify the correct expression for the relationship of current density and volume charge density. \begin{array}{c c} A & \nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline B & \nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ \hline C & \nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline Q.47 & The differential form of Ampere's law is \\ A & \nabla \times \mathbf{H} = \sigma \mathbf{J} \\ B & \nabla \times \mathbf{H} = \mathbf{J} \\ C & \nabla \cdot \mathbf{H} = \mathbf{J} \\ \hline C & \nabla \cdot \mathbf{H} = \mathbf{J} \\ \end{array} $			V		
system is $ \begin{array}{c c} A & \mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi} \\ B & \mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi} \\ \hline C & \mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi} \\ D & \mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + r\sin\theta d\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi} \\ \hline Q.46 & Identify the correct expression for the relationship of current density and volume charge density. \begin{array}{c c} A & \nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline B & \nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ \hline C & \nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline Q.47 & The differential form of Ampere's law is \\ A & \nabla \times \mathbf{H} = \sigma \mathbf{J} \\ B & \nabla \times \mathbf{H} = \mathbf{J} \\ C & \nabla \cdot \mathbf{H} = \mathbf{J} \\ \hline C & \nabla \cdot \mathbf{H} = \mathbf{J} \\ \end{array} $	Q.45	Th	e correct expression for incremental length in spherical coordinate		
B $\mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ C $\mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{0} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi}$ D $\mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + r\sin\theta d\theta\hat{\mathbf{a}}_{0} + rd\phi\hat{\mathbf{a}}_{\phi}$ Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ B $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ Q.47 The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$					
$\begin{array}{c c} \mathbf{C} & \mathbf{dL} = dr \hat{\mathbf{a}}_{\mathbf{r}} + r d\theta \hat{\mathbf{a}}_{0} + r \sin \phi d\phi \hat{\mathbf{a}}_{\phi} \\ \hline \mathbf{D} & \mathbf{dL} = dr \hat{\mathbf{a}}_{\mathbf{r}} + r \sin \theta d\theta \hat{\mathbf{a}}_{0} + r d\phi \hat{\mathbf{a}}_{\phi} \\ \hline \mathbf{Q}.46 & \text{Identify the correct expression for the relationship of current density and volume charge density.} \\ \hline \mathbf{A} & \nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline \mathbf{B} & \nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ \hline \mathbf{C} & \nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ \hline \mathbf{D} & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline \mathbf{Q}.47 & \text{The differential form of Ampere's law is} \\ \hline \mathbf{A} & \nabla \times \mathbf{H} = \sigma \mathbf{J} \\ \hline \mathbf{B} & \nabla \times \mathbf{H} = \mathbf{J} \\ \hline \mathbf{C} & \nabla \cdot \mathbf{H} = \mathbf{J} \\ \hline \end{array}$		Α	$\mathbf{dL} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{\theta} + r\sin\theta d\phi\hat{\mathbf{a}}_{\phi}$		
Q.46 $ \begin{array}{c c} \hline D & \mathbf{dL} = dr\hat{\mathbf{a}}_{r} + r\sin\theta d\theta \hat{\mathbf{a}}_{\theta} + rd\phi \hat{\mathbf{a}}_{\phi} \\ \hline Q.46 & Identify the correct expression for the relationship of current density and volume charge density. A & \nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline B & \nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ \hline C & \nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline Q.47 & The differential form of Ampere's law is \\ A & \nabla \times \mathbf{H} = \sigma \mathbf{J} \\ B & \nabla \times \mathbf{H} = \mathbf{J} \\ C & \nabla \cdot \mathbf{H} = \mathbf{J} \end{array} $		В	$\mathbf{dL} = dr\hat{\mathbf{a}}_{r} + rd\theta\hat{\mathbf{a}}_{\theta} + rd\phi\hat{\mathbf{a}}_{\phi}$		
Q.46 Identify the correct expression for the relationship of current density and volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ B $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ Q.47 The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$		С	$\mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + rd\theta\hat{\mathbf{a}}_{\theta} + r\sin\phi d\phi\hat{\mathbf{a}}_{\phi}$		
volume charge density. A $\nabla \times \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ B $\nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ C $\nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t}$ D $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t}$ Q.47 The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$		D	$\mathbf{dL} = dr\hat{\mathbf{a}}_{\mathbf{r}} + r\sin\theta d\theta \hat{\mathbf{a}}_{\mathbf{\theta}} + rd\phi \hat{\mathbf{a}}_{\phi}$		
$ \begin{array}{c c} A & \nabla \times \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t} \\ B & \nabla \cdot \mathbf{J} = \frac{\partial \rho_{v}}{\partial t} \\ \hline C & \nabla \times \mathbf{J} = \frac{\partial \rho_{v}}{\partial t} \\ D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t} \\ \hline Q.47 & The differential form of Ampere's law is A & \nabla \times \mathbf{H} = \sigma \mathbf{J} \\ B & \nabla \times \mathbf{H} = \mathbf{J} \\ C & \nabla \cdot \mathbf{H} = \mathbf{J} \end{array} $	Q.46	6 Identify the correct expression for the relationship of current density			
$\nabla \times \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ $\mathbf{B} \nabla \cdot \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ $\mathbf{C} \nabla \times \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$ $\mathbf{D} \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$ $\mathbf{Q.47} \text{The differential form of Ampere's law is}$ $\mathbf{A} \nabla \times \mathbf{H} = \sigma \mathbf{J}$ $\mathbf{B} \nabla \times \mathbf{H} = \mathbf{J}$ $\mathbf{C} \nabla \cdot \mathbf{H} = \mathbf{J}$		vol	ume charge density.		
$ \begin{array}{c c} B & \nabla \cdot \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ C & \nabla \times \mathbf{J} = \frac{\partial \rho_{\nu}}{\partial t} \\ D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \end{array} $ Q.47 The differential form of Ampere's law is $ \begin{array}{c c} A & \nabla \times \mathbf{H} = \sigma \mathbf{J} \\ B & \nabla \times \mathbf{H} = \mathbf{J} \\ C & \nabla \cdot \mathbf{H} = \mathbf{J} \end{array} $		A	$\nabla \times \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$		
$ \begin{array}{c c} \hline D & \nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \\ \hline Q.47 & The differential form of Ampere's law is \\ \hline A & \nabla \times \mathbf{H} = \sigma \mathbf{J} \\ \hline B & \nabla \times \mathbf{H} = \mathbf{J} \\ \hline C & \nabla \cdot \mathbf{H} = \mathbf{J} \end{array} $		В	$ abla \cdot \mathbf{J} = rac{\partial ho_{_{_{ar{v}}}}}{\partial t}$		
Q.47 The differential form of Ampere's law is A $\nabla \times \mathbf{H} = \sigma \mathbf{J}$ B $\nabla \times \mathbf{H} = \mathbf{J}$ C $\nabla \cdot \mathbf{H} = \mathbf{J}$		С	$\nabla \times \mathbf{J} = \frac{\partial \rho_{v}}{\partial t}$		
$A \nabla \times \mathbf{H} = \sigma \mathbf{J}$ $B \nabla \times \mathbf{H} = \mathbf{J}$ $C \nabla \cdot \mathbf{H} = \mathbf{J}$		D	$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t}$		
$A \nabla \times \mathbf{H} = \sigma \mathbf{J}$ $B \nabla \times \mathbf{H} = \mathbf{J}$ $C \nabla \cdot \mathbf{H} = \mathbf{J}$	0.47	Th	The differential form of Ampere's law is		
$B \nabla \times \mathbf{H} = \mathbf{J}$ $C \nabla \cdot \mathbf{H} = \mathbf{J}$					
$\mathbf{C} \nabla \cdot \mathbf{H} = \mathbf{J}$					
$D \nabla H = I$		С			
$D \mid VH - \Theta$		D	$\nabla \mathbf{H} = \mathbf{J}$		

Q.57	The instruction XRA A sets the contents of the accumulator (A) to:		
	(h:	for hexadecimal)	
	Α	00h	
	В	FFh	
	С	11h	
	D	the previous value stored.	
Q.58	Th	e Fourier Transform of $x(t) = \sin \omega_o t$ is	
	A	$X(j\omega) = \frac{1}{2} \left(\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right)$	
	В	$X(j\omega) = \frac{1}{2} \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right)$	
	С	$X(j\omega) = \frac{1}{\sqrt{2}} \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right)$	
	D	$X(j\omega) = \frac{1}{\sqrt{2}} \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right)$ $X(j\omega) = \frac{1}{\sqrt{2}} \left(\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right)$	
Q.59			
	Α	Nonlinear	
	В	Linear and Time Variant	
	С	Linear and Time Invariant	
	D	Only Linear and Time Invariant and Stable	
Q.60			
	Th	e theoretical sampling frequency should be:	
	A	200 Hz	
	В	500 Hz	
	С	100 Hz	
	D	Infinity	