10 QUESTIONS LOG ANA- REASONING AND 20 Q ON ENGG MATH. PRINTED
1-30.
THEN SERIAL 31-90 THESE BRANCH QUESTIONS.

60 Q OF EE FOR MTECH ENTRANCE

Q. 1 If two capacitors having capacitances of $6 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ respectively are connected in series across a 200 V supply, the voltage across the smaller capacitor is:

A	75 V
B	0
C	200 V
D	125 V

Q. 2 A coil of 200 turns is wound uniformly over a wooden ring having a mean circumference of 600 mm and a uniform cross-sectional area of 500 mm 2 . If the current through the coil is 4.0 A , the flux density is:

A	$1680 \mu \mathrm{~T}$
B	$0.838 \mu \mathrm{~T}$
C	$1330 \mu \mathrm{~T}$
D	1680 T

Q. 3 A coil of 300 turns, wound on a core of non-magnetic material, has an inductance of 10 mH . The average value of the e.m.f. induced when a current of 5 A is reversed in 8 ms (milliseconds) is:

The total energy stored in the magnetic field can be given by the expression

A	$\frac{1}{2} L_{A} I_{A}^{2}+\frac{1}{2} L_{B} I_{B}^{2}$	$\frac{1}{2} M_{A B} I_{A} I_{B}$

B $\frac{1}{2} L_{A} I_{A}^{2}+\frac{1}{2} L_{B} I_{B}^{2}+M_{A B} I_{A} I_{B}$
C $\frac{1}{2} L_{A} I_{A}^{2}+\frac{1}{2} L_{B} I_{B}^{2} \quad M_{A B} I_{A} I_{B}$
D $\frac{1}{2} L_{A} I_{A}^{2}+\frac{1}{2} L_{B} I_{B}^{2}+\frac{1}{2} M_{A B} I_{A} I_{B}$

Q. 12		value of I_{C} is approximarely:
	A	2 mA
	B	3 mA
	C	40 micro A
	D	50 micro A
Q. 13		value of $V_{D S}$ is :
	A	10 V
	B	3 V
	C	$-0.35 \mathrm{~V}$
	D	7.23 V
Q. 14	The transistor configuration having minimum output impedance is:	
	A	Common Emitter
	B	Common Base
	C	Common Collector
	D	Inverse Common Emitter

Q.23

Q. 27		effect of source inductance is :
	A	Increase of the DC output voltage in the output
	B	Increase in the harmonics at the input
	C	Reduction in the current harmonics at the input
	D	Reduction in the voltage harmonics at the input
Q. 28	In a single-phase thyristor converter, $\mathrm{V}_{\mathrm{S}}=120 \mathrm{~V}(\mathrm{rms})$ at 50 Hz , and the firing angle $\alpha=45^{\circ}$. This converter is supplying 1 kW of power. The dc-side current id can be assumed purely dc. The average DC output voltage is :	
	A	76.4
	B	54
	C	64
	D	84
Q. 29	 The load current waveform shown in the figure is of a single phase fully controlled converter. It has a :	
	A	Purely Resistive load.
	B	Purely Inductive Load.
	C	Load with small R/L ratio.
	D	Load with large R/L ratio.

Q.33	By introducing a very small air gap in the magnetic circuit of a transformer the primary side power factor will	
	A 1 Increase	
	B	Remain same
	C	Become negative
	D	Decrease

Q. 37	An induction motor has efficiency of 0.9 when the load is 50 hp . At this load the stator copper loss and rotor copper loss each equals the iron loss. The mechanical loss is one third of no-load loss. The slip is:	
	A	0.312
	B	0.0312
	C	0.00312
	D	3.12
Q. 38	The power input to a 3 -phase induction motor is 60 kW . The stator losses total 1 kW . The total mechanical power developed at a slip of 3%.	
	A	58.1
	B	59.02
	C	57.23
	D	56.2
Q. 39		figure shows the transmission line with two conductors. The acitance between the lines is given by:
	A	$C_{A B}=\frac{\pi}{\ln \left(D / \sqrt{r_{1} r_{2}}\right)}$
	B	$C_{A B}=\frac{\pi \varepsilon_{0}}{\ln \left(D / \sqrt{r_{1} r_{2}}\right)}$
	C	$C_{A B}=\frac{\pi \varepsilon_{0}}{\ln \left(D r_{1} r_{2}\right)}$
	D	$C_{A B}=\frac{\ln \left(D / \sqrt{r_{1} r_{2}}\right)}{\pi \varepsilon_{0}}$
Q. 40	A matching circuit in analog signal processing is used to match	
	A	voltage
	B	power
	C	impedance
	D	current
Q. 41	The zero sequence components of a 3-phase system indicate	
	A	DC quantities with unequal magnitudes
	B	AC quantities with phase difference of 120 degrees
	C	AC quantities with no phase difference between them
	D	DC quantities with equal magnitude
Q. 42	A 1-phase transmission line has a resistance of 0.22 ohms and an inductive reactance of 0.36 ohms. The voltage at the sending end to give 500 kVA with unity power factor and at 2000 volts is:	

	A	2106 V
	B	2206 V
	C	2086 V
	D	2056 V

Q. 57	The instruction XRA A sets the contents of the accumulator (A) to: (h for hexadecimal)	
	A	00h
	B	FFh
	C	11h
	D	the previo
Q. 58	The Fourier Transform of $x(t)=\sin \omega_{o} t$ is	
	A	$X(j \omega)=$
	B	$X(j \omega)=$
	C	$X(j \omega)=$
	D	$X(j \omega)=-$
Q. 59	The Laplace transform will exist for systems which are	
	A	Nonlinear
	B	Linear an
	C	Linear an
	D	Only Line
Q. 60	A periodic triangular wave of time period of 10 ms needs to be sampled. The theoretical sampling frequency should be:	
	A	200 Hz
	B	500 Hz
	C	100 Hz
	D	Infinity

